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Introduction

m Machine learning (ML) has become an integral part of modern life,
influencing various aspects of technology, finance, healthcare, and
law enforcement.
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Motivation

Amazon, Apple, Google, IBM, and Microsoft worse at
transcribing black people's voices than white people's
with Al voice recognition, study finds

Mil!“’“? Of_bIaCk people affeCt?d by Gender Bias In Al: Addressing Technological
racial bias in health-care algorithms Disparities

Study reveals rampant racism in decision-making software used by US hospitals — and

highlights ways to correctit. Insight - Amazon scraps secret Al
recruiting tool that showed bias against

women

Artificial Intelligence has a gender bias
problem - just ask Siri

Racially-biased medical algorithm prioritizes Al Bias Could Put Women's Lives At Risk - A
white patients over black patients Challenge For Regulators

The algorithm was based on the faulty assumption that health care spending is a good proxy for wellbeing. But there seems to

be a quick fix.

The Best Algorithms Struggle to Recognize Black Faces Equally

US government tests find even top-performing facial recognition systems misidentify blacks at rates five to 10 times higher than they do whites.
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Problem Formulation

m Fair graph clustering: Partition a graph such that the distribution of
protected groups within each cluster is the same as their distribution
in the entire graph (while minimizing the cut between clusters).
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Problem Formulation

m Fair graph clustering: Partition a graph such that the distribution of
protected groups within each cluster is the same as their distribution
in the entire graph (while minimizing the cut between clusters).
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Problem Formulation

m Fair graph clustering

®V
oV,

Vi)

_ — 250
T
‘Goal:

* For every group and every cluster.
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Problem Formulation

m Fairness as linear constraints (for two groups and two clusters)
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Problem Formulation

m Fairness as linear constraints (for two groups and two clusters)

Fairness matrix
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Problem Formulation

m Fairness as linear constraints (for two groups and two clusters)

Fairness matrix
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Problem Formulation

m Fair graph clustering problem becomes

min Tr(V'LV)
VGRTL X k

subject to V!V=Tand F'V = 0.

m FairSC! and sFairSC” add fairness constraints as linear constraints
into the spectral clustering problem.

m However, they require solving constrained eigenvalue problems
through computationally expensive operations.
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Overview of FairAD
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Overview of FairAD
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* Please refer to our paper for more details.

(4] Solving a constrained
minimization problem
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Imposing Fairness Constraints

m Algebraic distance is a measure that quantifies the “closeness”
between two nodes.

s(i,j) = max |x.; — x|
r=1,2,....R
alg ..
W E = exp(=s(i. j))
TEXAS<k STATE
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Imposing Fairness Constraints

m Algebraic distance is a measure that quantifies the “closeness”
between two nodes.

s(i, ]) = max |xr’i — xr,jl > Test veptors from Jacobi
r=1,2,....R relaxation on Lx = O.

New affinity matrix «— {/\/,al,g = exp(—s(i, ]))
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Imposing Fairness Constraints

m Imposing fairness constraint into the algebraic distance matrix

! = D 'Wxi~1! — Test vector at t-th Jacobi relaxation iteration

Dx’ = Wx'~! subject tol F'x'=0

—— Fairness constraint

x'=(D+ ‘uFFT)‘lth—l —— Test vector with fairness constraint

W8 =exp(—s(i, j)) — New affinity matrix with fairness constraint

l,J

* Please refer to our paper for more details.
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Overview of FairAD
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* Please refer to our paper for more details.
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Graph Coarsening

m Graph coarsening identifies a small set of representative nodes that
serve as anchors to guide the final clustering.
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Graph Coarsening

m Graph coarsening identifies a small set of representative nodes that
serve as anchors to guide the final clustering.

Coarsened graphs
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Keep weakly connected

Merge strongly anchor nodes
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O Solving a constrained
minimization problem




Solving a Constrained Minimization Problem

m Finding solution from anchor nodes

Formulate as a constrained
minimization problem
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Solving a Constrained Minimization Problem

m Finding solution from anchor nodes

Formulate as a constrained
minimization problem
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Experiment Setup

m Datasets: We consider both synthetic and public real-world datasets
for performance evaluation.

Dataset V| |E] Sensitive Attribute | h

NBA 403 10,621 Country 2

German 1,000 21,742 Gender 2

LastFM 7,624 | 27,806 Country 4

Recidivism | 18,876 | 311,870 Race 2

Deezer 28,281 | 92,752 Gender 2

Credit 29,460 | 136,196 Education 3

Modified Stochastic Block Model (m-SBM)
TEXASyk STATE
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Experiment Setup

m Baselines: Spectral clustering (SC), FairSC?1, and sFairSC-.

m Performance metrics: Error rate, average balance, and running time.

> Error rate: measure the discrepancy between computed and ground truth
clustering labels.

> Average balance: measure how evenly different groups are represented across
clusters, with a higher score indicating fairer clustering.

> Running time: measure the total running time of an algorithm.
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Simulation Results

m Error rate and running time for mSBM with varying h and k.

mmin SC
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> Observation 1: FairSC, sFairSC, and FairAD successfully recover the ground-truth labels,
while SC fails with high error rate.

» Observation 2: FairAD is significantly faster, achieving up to a 42x speedup over %@

and a 12x speedup over sFairSC.
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Simulation Results

m Average balance on real-world datasets.

EEA SC FairSC [EE3 sFairSC FairAD
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» QObservation: FairAD consistently delivers the most balanced clusters, outperforming
baselines by 10-15% on large graphs and up to 100% on smaller ones. TEXAS3e STATE
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Simulation Results

m Running time on real-world datasets.

EXX SC FairSC @ sFairSC FairAD
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Observation: FairAD is significantly more efficient than its counterparts, delivering up to

3x speedup on small graphs and a speed-up of up to 40x on large graphs.
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Conclusion
m We have developed FairAD, a computationally efficient fair graph
clustering method.

m We have proposed a framework that imposes fairness constraints
directly in the affinity matrix via algebraic distance.

m We have conducted extensive experiments to demonstrate the
correctness and effectiveness of FairAD.

m We expect that FairAD can be an effective approach for fair graph
clustering on large graphs.
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Thank you!!

uestions & Answers
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